
Self-supervised Monocular Road Detection in
Desert Terrain

Hendrik Dahlkamp∗, Adrian Kaehler†, David Stavens∗, Sebastian Thrun∗, and Gary Bradski†
∗Stanford University, Stanford, CA 94305
†Intel Corporation, Santa Clara, CA 95052

Abstract— We present a method for identifying drivable sur-
faces in difficult unpaved and offroad terrain conditions as
encountered in the DARPA Grand Challenge robot race. Instead
of relying on a static, pre-computed road appearance model, this
method adjusts its model to changing environments. It achieves
robustness by combining sensor information from a laser range
finder, a pose estimation system and a color camera. Using the
first two modalities, the system first identifies a nearby patch
of drivable surface. Computer Vision then takes this patch and
uses it to construct appearance models to find drivable surface
outward into the far range. This information is put into a
drivability map for the vehicle path planner. In addition to
evaluating the method’s performance using a scoring framework
run on real-world data, the system was entered, and won, the
2005 DARPA Grand Challenge. Post-race log-file analysis proved
that without the Computer Vision algorithm, the vehicle would
not have driven fast enough to win.

I. INTRODUCTION

This paper describes a Computer Vision algorithm devel-
oped for our entry to the 2005 DARPA Grand Challenge. Our
vehicle (shown in Fig. 1) uses laser range finders as sensors
for obstacle avoidance. Their range, however, is very limited
due to high levels of environmental light, a shallow incident
angle with the ground and possible dirt on the sensors. Since
a vehicle needs to be able to stop within this distance, using
lasers limits the maximum speed at which a vehicle can travel
while maintaining the ability to avoid obstacles.

Therefore, we are proposing a camera system as an ad-
ditional long-range sensor. Our goal is to detect drivable
surface in desert terrain, at long range. In the existing body
of literature, the primary concern has been the identification
of the kind of paved roads observed in daily situations such
as highways, country roads and urban roads. Such roads are
typically characterized by their asphalt or concrete color, as
well as by standardized markings in or at the edges of the
roads, and are hence much easier to identify than undevel-
oped dirt-roads occurring in the desert area where the Grand
Challenge took place. Consequently, most published papers
are not directly applicable to the problem:

Universität der Bundeswehr München (UBM) has one of
the most mature autonomous driving systems, in development
since 1985[1]. Their approach involves modeling roads as
clothoids and estimating their parameters using an Extended
Kalman Filter (EKF) on visual observations and odome-
try. More recent work extends that framework to dirt road
detection[2], waypoint driving[3], and obstacle detection while
driving off-road[4].

Fig. 1. Image of our vehicle while driving in the 2005 DARPA Grand
Challenge.

For the DARPA Grand Challenge, however, their system[5]
is not directly applicable: Their road finder operates on grey,
not color images. The desert terrain relevant for the Grand
Challenge has very subtle color tones hidden in grey images.
Furthermore, success of dirt-road finding depends on a manual
initialization step. Finally, the system cannot handle arbitrarily
shaped surfaces, even the dirt-road localization needs a road
complying to model assumptions.

Both the ARGO project of the Università di Parma, Italy[6],
[7], as well as Carnegie Mellon University (CMU)’s NavLab
project[8] are only concerned with on-road driving. In addition
to using tracking of lane markings, CMU also deals with
inner-city driving involving cluttered scenes and collision
avoidance[9].

Another system applicable to inner-city driving belongs to
Fraunhofer IITB in Germany. Their use of computer vision
for road finding includes edge extraction and fitting those
to edges to a detailed lane- and intersection model for pose
estimation[10].

The DARPA Learning Applied to Ground Robotics (LAGR)
project has also created interest in vision-based terrain
classification[11]. Due to the relatively slow speed of the
LAGR vehicle, however, sensor lookahead distance in the
LAGR project is not as crucial as in the DARPA Grand
Challenge. Because LAGR sensors are limited to stereo cam-
eras and a contact sensor, combination of different sensor
modalities is not possible.

Outside of robotics, a surprisingly similar application is
skin-color detection. Previous work, e.g.[12] also uses a
gaussian-mixture model to deal with varying illumination

(though not desert sun) and varying skin tone between indi-
viduals, comparable to road material changes. There, however,
the option of fusing data with a different sensor modality does
not exist.

Finally, previous work associated with our group[13] pro-
vides very good classification in the desired terrain types, but
needs examples of non-drivable terrain as training data, which
our robot cannot easily provide automatically.

To overcome the limitations of these published algorithms,
and achieve the level of robustness and accuracy required for
the DARPA Grand Challenge, we have developed a novel
algorithm whose main feature is the adaptation to different
terrain types while driving, based on a self-supervised learn-
ing algorithm. This self-supervised learning is achieved by
combining the camera image with a laser range finder as a
second sensor. Specifically, the laser is used to scan for flat,
drivable surface area in the near vicinity of the vehicle. Once
identified, this area is assumed to be road and used as training
data for the computer vision algorithm. The vision algorithm
then classifies the entire field of view of the camera, and
extracts a drivability map with a range of up to 70m. The
combined sensors are integrated into a driving strategy, which
allows for very robust, long range sensing. This is ultimately
proven by winning the 2005 DARPA Grand Challenge.

Section II of this paper explains the different steps of this
algorithm in detail, Section III provides numerical results
that lead to parameter selections for the race and Section IV
presents results achieved by running the algorithm in the 2005
DARPA Grand Challenge.

II. ALGORITHM DESCRIPTION

The overall method consists of seven major parts. These are:
(A) Extracting close range road location from sensors invariant
to lightning conditions, (B) Removing sky and shadow areas
from the visual field, (C) Learning a visual model of the nearby
road, (D) Scoring the visual field by that model, (E) Selecting
identified road patches, (F) Constructing a sky-view drivability
map, and (G) exploiting that map for a driving strategy. We
will address each of these separately.

A. Extracting close range road location from laser sensors

Scanning laser range finders mounted rigidly on a moving
vehicle are used to sweep out a map of the terrain in front
of the vehicle one line at a time. Referencing the laser scans
with an exact 6 degree of freedom (DOF) pose estimate, the
accumulation of such lines form a point cloud corresponding to
the locations of individual points on the surface of the ground,
or obstacles ahead. Using this point cloud, a 2-dimensional
drivability map is established, dividing the area into drivable
and non-drivable map cells. Our approach, described in [14],
achieves this by looking for height differences within and
across map cells while modeling point uncertainties in a tem-
poral Markov chain. Once such a map is created, a quadrangle
is fit to the largest drivable region in front of the vehicle. This
quadrangle, usually shaped like a trapezoid, is shown in black
on the left side of Figure 2.

Fig. 2. Real-time generated map of the vehicle vicinity.
The left image shows close-range map as generated by the laser scanners.
Red cells are occupied by obstacles, white cells are drivable and grey cells
are (as yet) unknown. The black quadrangle is fit into the known empty area
and shipped to the computer vision algorithm as training data for drivable
road surface.
The right image shows a long-range map as generated by the computer-vision
algorithm described in this paper. It can be seen that the road detection range
is in this case about 70m, as opposed to only 22m using lasers.

Using the 6 DOF position estimate for the vehicle and
the position of the camera with respect to the vehicle, we
project the quadrangle into the visual plane of the camera. It
is now safe to assume that this area in the image contains
only drivable surface or road, because lasers just identified it
to be flat and because GPS data indicates that we are inside
the Grand Challenge driving corridor.

We will hence forth refer to this quadrangle area as the
”training” area: based on this area we will build our models
of what the road ”looks like”.

B. Removing sky and shadows

We must deal with cast shadows that are dark enough that
anything in them is hidden. In our present case, we opt to
simply remove shadowed terrain. This can cause occasional
problems, in particular when a long shadow falls across a road,
but for our present purpose the option of eliminating shadow
pixels from the model provides acceptable results.

We define a shadow pixel as any pixel whose brightness falls
below a minimum threshold, and whose blue content is greater
than its red or green content (measured as 8 bits in each of the
three channels). The sky is not problematic for the algorithm,
but measurement of sky pixels against the learned models
(see below) is computationally wasteful. We implement the
horizon finding algorithm originally proposed by Ettinger et
al.[15] to eliminate all pixels above that horizon. We also use
a flood fill to find pixels below the horizon which are the same
color as the sky above, and also eliminate these. Finally, we
found that a dilation of the sky thus defined removes pixels on
distant horizon objects, saving compute time at no loss to the
algorithm otherwise. The right part of Fig. 4 shows a sample
sky-ground segmentation.

C. Learning a visual model of the nearby road

Once we have the training area, and have removed any
shadows from that training area, the next task is to abstract

the data into a model which we subsequently use to score
pixels outside of the training area. Our basic model of the
road appearance is a mixture of Gaussians (MOG)-model
in RGB space, with k Gaussians to be found. Our method
is to classify all pixels in the training area using k-means
clustering[16], and then to model each cluster by its average
value, its covariance matrix, and its mass (where the mass is
defined as the total number of pixels in the cluster). These
abstractions are the training models. In addition to the k
training models, the method provides for ’n’ learned color
models (where n > k). Initially, all of these learned models
are null. Each of the training models is compared to the learned
models at any given frame of the incoming video stream. If
the training models overlap with a learned model according to
the following relation:

(µL − µT)T (ΣL + ΣT)−1(µL − µT) ≤ 1 (1)

(where µi and Σi are the mean and covariances of the two
models respectively) the training model is interpreted as new
data for that learned model, and the learned model is updated.
The model is updated according to the formula

µL ← (mLµL + mT µT)/(mL + mT) (2)
ΣL ← (mLΣL + mT ΣT)/(mL + mT) (3)
mL ← mL + mT , (4)

where mi is the mass of the associated model. We acknowl-
edge there are statistically more sound ways of integrating
these. If the training model matches no existing learned model,
then one of two things happens: if there are still null models
one of them is replaced by the training model. If no null
models remain, then the learned model with the lowest mass
is eliminated and replaced with the training model. In this
way, new road types which are encountered generate new
models until the space for storing models is saturated. Once
this space is saturated, new models can still be learned, but
known models which are not associated with a large mass
(i.e. a large amount of experience of that model) will be lost
to make room for the new model.

The setup of distinguishing k gaussians describing the
current training area from n gaussians describing training
history allows the system to tightly fit its model to the training
while keeping a richer history of the past road appearance. In
addition, the matching process allows for dynamic adaptation
to situations of both slow-varying and quickly changing road
appearance. In the first case of smooth trail driving, the
training model is matched to a learned one and updates it
slowly by merging data. In the second case of a sudden road
surface change, the system reacts instantly by replacing an old
learned gaussian with a new one from the training area.

D. Scoring the visual field by the road model

At this point, it is possible to score all pixels in the image
according to the learned models. Individual pixels are assigned
a score which is the Mahalanobis distance from that point to

Fig. 3. Input raw image (left) and output data of the computer vision part
of the algorithm. The right image duplicates the left, overlaying the training
data from the laser map (blue polygon), and the pixels identified as drivable
(red area). The scene is the same as in Fig. 2.

Fig. 4. Intermediate processing steps: The left image shows the similarity
of each pixel to our road model (before thresholding). The right image shows
the border between ground and sky, as found by the algorithm.

the mean of the learned model Gaussian which minimizes this
distance, and whose mass is above some threshold which saves
compute time by not testing individual pixels against models
with very low mass. We set this threshold to 30% (of the
mass of the most massive model) and found this to provide
a good balance between efficiency and result quality. By
using a Mahalanobis distance, we handle roads with different
color and texture variation by adapting the thresholds to what
constitutes drivable terrain. In this way, every point in the
image (excluding sky and shadows which we have already
removed from consideration) is assigned a “roadness” score.
The left part of Figure 4 shows the output of this processing
step.

E. Selecting identified patches

By thresholding away image points further away than 3σ,
we get a binary image indicating the drivability of each pixel.
Most roads, however, still have individual outlier pixels not
classified as drivable. These pixels usually correspond to small
leaves, stones, and other items not considered obstacles. To
avoid being influenced by these impurities, we run a dilate
filter followed by two erode filters on the image. This removes
small non-drivable areas while preserving bigger obstacles and
even encircling them with a non-drivable corona. Furthermore,
we only accept pixels that have a connected path to the location
of the training polygon. This gets rid of unwanted clutter
made up from distant mountains or other small clutter that
just happens to have the same properties as the main road.
The resulting, final classification is visible as red pixels in the
right part of Figure 3.

F. Constructing a sky-view drivability map

The next step is to re-project this 2D drivability image into
a sky-view map similar to the laser occupancy map which
was used to extract the training area. The major obstacle
here is the absence of depth information from the image.
As an approximation, we reverse the projective transform by
assuming the road is flat but sloped by a constant degree
upwards or downwards. This assumption is valid for almost
all roads encountered in the Grand Challenge, since it allows
for inclines and declines, as long as the slope does not change
much. The places where this assumption is invalid usually lie
in highly irregular mountainous terrain. In the mountains, the
vehicle is slow anyways, so computer vision as a long-range
sensor is not required for safe driving.

The road slope is accurately estimated by a low-pass filter
on vehicle pitch obtained from the pose estimation system.
This distinction between vehicle and road pitch allows driving
inclines and declines while maintaining the ability to factor
out fast camera movement, as caused by road ruts and general
bumpy off-road driving.

Given 6D pose information for the camera, projection of the
camera image into a vision map is straightforward. As a result,
the map created by this method (right part of Fig. 2) reaches
much further than the one created using only the lasers (left
part of Fig. 2).

G. Incorporating the drivability map into a driving strategy

While the vision map is remarkably accurate in most driving
situations, it only has two states, namely drivable and unknown
cells. Simply because a part of the image does not look like
the training set does not imply that it is obstacle. The laser
map on the other hand is tri-state and distinguishes between
obstacles and unknown areas.

For this reason, our driving strategy performs path-planning
only in the laser map and instead uses the vision map as
part of the speed selection strategy: By default, the vehicle
has a maximum velocity of 11.2m/s (25mph). Only if the
vision map contains only drivable cells among the next 40m
of the planned path, the maximum velocity is set to 15.6m/s
(35mph). Therefore, computer vision acts as a pre-warning
system. If our vehicle is driving towards an obstacle at high
speed, it is slowed down as soon as vision fails to see clear
road out to 40m. Once the obstacle comes within laser range,
the vehicle has already slowed down and has no problem
avoiding the obstacle using the laser range finders without
exceeding lateral acceleration constraints. Though not needed
for the race, avoidance of stationary, car-sized obstacles in
the middle of the path was demonstrated at up to 17.9m/s
(40mph), on slippery gravel surface.

III. PARAMETER SELECTION

A. Scoring classification results

In order to compare different algorithms and optimize pa-
rameters, we need a scoring method that enables us to evaluate
the efficiency of a particular approach. Instead of tedious,
hand-labeling of images as ground-truth for drivability, we

Fig. 5. These 4 images were acquired within a second during the Grand
Challenge National Qualifying Event (NQE) and show the process of adaption
to different terrain types. The algorithm initially learns to identify grey asphalt
as road (top left), but as the training area contains more and more green grass,
the algorithm switches to accept this grass (bottom right).

chose a practical approach: Since development and testing of
our vehicle was performed on last year’s Grand Challenge
course, we decided to train on the corridor data associated
with that race. To comply with California law, DARPA had
to provide participating teams with a route file that describes
the allowed driving corridor and extends no wider than the
actual roads width (at least for the Californian segment of
the race). To make the race feasible for truck-based entrants,
DARPA had to also make sure that this corridor is not
much smaller than the road. Therefore, we already have a
ground-truth labeling. Due to Stanley’s pose estimation error
following the course, this labeling is of course not always
entirely accurate, but in good, open sky sections 20cm-accurate
localization is obtained and in worst-case conditions about
2m error. Fortunately, the error is independent of algorithmic
choices therefore not biased towards certain parameters. So
comparisons of algorithms using this ground-truth are valid
while the absolute performance numbers may be slightly
inaccurate. Furthermore, the DARPA labeling is specified in
the sky-view map instead of the image, which allows scoring
in the final drivability map produced by the algorithm and not
in the image, which is a mere intermediate product. Based
on the corridor, our scoring function counts the number of
drivable cells inside the corridor that are correctly identified
as road (true positives, TP) and the number of cells outside the
corridor that are wrongly classified as drivable (false positives,
FP). While not all cells outside the corridor are non-drivable,
they are usually not road and hence desirable to be not marked
so. To make our scoring even more meaningful, we only scored
cells between 25m and 50m in front of the robot, as that is
the target range for vision-based sensing. The closer range is
already covered by laser range finders and looking out farther
is not necessary at the speeds driven in the Grand Challenge.

0.1 0.12 0.14 0.16
50

52

54

56

58

60

62

64
 k=1

 k=2

 k=3

 k=4

 k=5

% false positives

%
 tr

ue
 p

os
iti

ve
s

0.09 0.1 0.11 0.12 0.13 0.14

38

40

42

44

46
 k=1

 k=2

 k=3

 k=4

 k=5

% false positives

%
 tr

ue
 p

os
iti

ve
s

Fig. 6. The impact of k on tracking performance. The black line shows
averages over different values of n ∈ {6, 7, 8, 10, 15}, which are plotted in
clusters colored by value of k ∈ {1 . . . 5} (φ = 1.0 is constant). Left and
right plots are for two subsets of the Grand Challenge 05 data, each 1000
image frames in length. As expected, an increasing k leads to a tighter fit of
the road model to the training data, which results in a reduction of both false
and true positives.

In order to compare TP and FP rates, we chose to plot Receiver
Operating Characteristic (ROC) curves.

B. Further testing results

During our 2-month testing phase before the race, the vision
system was confronted with a number of different obstacle
types including parked cars, black and white trashcans, and a
PVC tank trap model - all of which we were able to detect.
During reliability testing, Stanley drove 200 autonomous miles
on a 2.2-mile loop course with two white trashcans per loop,
placed on light grey gravel in a 35mph speed zone. Stanley
managed to avoid 180 out of the 181 obstacles and only
sideswiped the remaining one. The main limitation of the
system is it’s color-focused design and thus the inability to
detect objects with little color difference to the underlying
road. A brown object on a brown dirt road without significant
shadow is undetectable.

C. Optimal number of Gaussians

A major design choice in our algorithm is how many
Gaussians to select in k-means clustering (k). The model
storage capacity n is less important, as long as n > k. As
n is increased, the number of frames where more than a few
of the n models have a mass above the threshold is very small,
so that the effect of increasing n is negligible.

Choosing a small value of k has the danger of not being
able to model multi-colored roads (like pavement with lane
markers), leading to a loose fit that includes colors between
the ones in the training set. Choosing a large value on the other
hand can lead to loss of generality and overfitting the training
patch to an extent where too little actual road is found.

Figure 6 provides ROC curves for different values of these
parameters. The mentioned tradeoff between small and large
k is clearly visible.

D. Balancing road and obstacle finding

The other obvious place to tune TP vs. FP rate is by setting
the threshold for the maximum mahalanobis distance between
pixels and the MOG is accepted in section 2.4. Testing the
algorithm on different kinds of road, however, unearthed a

0 1 2 3 4
50

60

70

80

90

% false positives

%
 tr

ue
 p

os
iti

ve
s

 1

 2

 5
 10

 15 17
 20

 25

 1

 2

 5

 10
 15

 17
 20

 25

n=1,k=1
n=10,k=3

0.2 0.4 0.6 0.8
40

50

60

70

80

90

% false positives

%
 tr

ue
 p

os
iti

ve
s

 1

 2

 5

 10

 15
 17

 20
 25

 1
 2

 5

 10

 15
 17

 20
 25

n=1,k=1
n=10,k=3

Fig. 7. The impact of φ on tracking performance. Increasing the parameter
φ while keeping other parameters constant increases the overall number of
cells identified as road. Left and right plot are for the same datasets as in
Figure 6.

problem with very uniformly colored road surfaces. Since we
do not incorporate textures in our algorithm, our camera was
set to not enhance edges, and consequentially color variation
in some training areas can be very low - less than one
brightness value standard deviation. Even the slightest color
variation further out (for example caused by CCD blooming
in desert light, or just lens imperfections) would cause the
road in this situation to be called non-drivable. Paradoxically,
this meant that uniform colored road was detected with less
certainty than textured road. To solve this problem and provide
accurate classification in both road situations, we introduce an
explicit minimum noise term φ I3x3 added to the measured
training data covariance. By modifying this noise term, we
can tune the ROC curves for true positives vs. false negatives
and balance between constant and environment-adaptive color
thresholding. Figure 7 displays ROC curves for different
values of these thresholds.

IV. GRAND CHALLENGE RESULTS

Our main result consists in successfully completing and
winning the 2005 DARPA Grand Challenge. Figure 8 shows a
significant overtaking maneuver during the race, and Figure 10
shows some other scenes that Stanley encountered during the
race.

A. Real-time performance

For our application it is crucial that the algorithm runs in
real-time and reacts predictably to unrehearsed environmental
conditions. Since onboard power comes from the stock alter-
nator that has to supply numerous other consumers as well,
the computing power allocated for computer vision was that
of just one Pentium M 1.6 Ghz Blade computer, comparable
to a low-end laptop. Furthermore, this computing power is
also used for receiving images from the ethernet camera,
for calculating image statistics to adjust camera parameters,
for video compression, logging on the hard disk, and for
distributing the map to the path planning algorithm. Therefore,
only half of that computing power is available for the actual
computer vision part of the algorithm. To achieve performance
of about 12fps and to keep the algorithm simple and hence
more robust, we made the following parameter choices on race
day:

Fig. 8. Overtaking maneuver: At mile 101.5, we overtook CMU’s H1ghlander
vehicle. The processed image in the upper right part shows how the obstacle
is clearly identified by the algorithm. The lower part shows the generated
map, where H1ghlander is visible at 50m range.

• (n, k) = (1, 1): Although results indicate that values of
k = 2 − 3 and n = 5 − 10 perform slightly better,
the algorithm is more predictable for simple parameters.
Furthermore, the runtime of the pixel evaluation depends
linearly on n, so smaller values increase frame rate. If
the race was held a second time, or if more knowledge
about the terrain types encountered had been available
beforehand, we would run/have run it with values (3, 10).

• Image resolution was 320× 240.
• Shadow and sky removal was disabled. We chose to

mount the camera and select the camera zoom such that
the overwhelming proportion of the visible scene would
not contain sky. Thus the computation time required
to locate the horizon was not warranted by the small
reduction in pixels requiring analysis.

Our code made use of the Open Source Computer Vision
Library (OpenCV)[18] maintained by Intel. OpenCV is a
comprehensive collection of C code optimized computer vision
algorithms under a BSD license. We also utilized Intel Inte-
grated Performance Primitives[19] software library containing
assembly level optimized routines that OpenCV makes use of.

B. Impact on the race outcome

The completion time of our robot, measured by DARPA
officials, was 6:53:58 hours, resulting in 1st place. Without
the computer vision module, our top speed would have been
11.2m/s (25mph) instead of 15.6m/s (35mph). Figure 9 shows
the average speed during the 132.2 mile race. Simulating

0 20 40 60 80 100 120
0

10

20

30

40

Grand Challenge Progress [miles]

av
er

ag
e

m
ph

Fig. 9. Average speed (50 second window) of our vehicle during the 2005
Grand Challenge. All velocities above 11.2m/s (25mph) would not have been
achieved without help of the computer vision algorithm. Please note that other
factors (for example speed limits and road roughness) would also slow down
the vehicle. The top speed is only achieved when all sensors indicate perfect
driving conditions.

our finishing time by capping vehicle velocity at a safe laser
speed of 25mph, we obtain a new finishing time of more than
7 hours and 5 minutes. The improvement seems unimpressive,
but it has to be considered that the entire route had DARPA
speed limits attached. In fact, post-race analysis concluded that
67.7% of the time, the DARPA speed limit or a lateral accel-
eration constraint limited Stanley’s maximum speed. 17.6% of
the time, road roughness estimated by [17] limited the speed
and only 14.0% of the time, the algorithm described in this
article was responsible for not driving faster. Furthermore,
turning vision off would have guaranteed Stanley a second
place behind CMU’s Sandstorm vehicle which finished in
7:04:50 hours.

V. CONCLUSIONS

We have presented a novel method for locating roads in
difficult, uneven, and inconsistent terrain. The context of the
DARPA Grand Challenge involved driving 132 miles in 7
hours, starting before dawn and continuing through the diverse
illumination conditions of the Nevada desert. By relying on
short range sensors to train the vision system we were able
to continuously learn and adapt to new conditions throughout
this extended period of time. Because our method relies on
fast, well developed algorithms, the overall method shows high
performance in real time even on modest computer hardware.
This combination of performance and robustness played a
decisive role in the race victory.

While the system as-is was developed with the application
of the DARPA Grand Challenge in mind, the underlying
approaches can be generalized to help solve other real-world
problems and finally bring Computer Vision into production
systems: Systems are much more robust if they integrate
multiple sensor modalities in a way that takes the advantages
and disadvantages of each sensor into account. Vision should
be treated as an add-on to a system, and as such it can play a
role that extends capabilities significantly.

At the current development level, vision may still have
failure modes if the conditions don’t allow for it to operate

Fig. 10. Scenes of the 2005 Grand Challenge: The first row shows a media
watch point, with the raw camera image on the left and the classification
result on the right. The next rows show classification results during traversal
of the mountainous Beer Bottle Pass. The blue training area varies significantly
because the rugged nature of the environment causes Stanley to shake more,
which in turn sometimes leaves holes in the laser map. The module that fits an
area-maximized training quadrangle into this map is conservative and tries not
to cover these holes. A training area that varies from frame to frame however
does not harm segmentation performance, since the algorithm is executed at
high frame rate and learns a road model that incorporates history.

confidently. However, systems can be designed such that they
gracefully fall back to base functionality provided by other
modalities. In our case, Stanley simply slowed down if vision
was unable to prove road drivability out to a safe distance.

ACKNOWLEDGMENT

The authors would like to thank the members of the team,
as well as the sponsors for making the project possible.

REFERENCES

[1] E. D. Dickmanns and A. Zapp, Guiding Land Vehicles Along Roadways by
Computer Vision. Proc. AFCET Congres Automatique, Toulouse, France,
October 23-25 1985.

[2] M. Lützeler and S. Baten, Road Recognition for a Tracked Vehicle. Proc.
SPIE Conf. on Enhanced and Synthetic Vision, AeroSense 2000, Orlando,
FL, USA, April 24-28 2000.

[3] R. Gregor, M. Lützeler, and E. D. Dickmanns, EMS-Vision: Combining
on- and off-road driving. Proc. SPIE Conf. on Unmanned Ground Vehicle
Technology III, AeroSense 2001, Orlando, FL, USA, April 16-17 2001.

[4] S. Baten, M. Lützeler, E. D. Dickmanns, R. Mandelbaum, and P. Burt,
Techniques for Autonomous, Off-Road Navigation. IEEE Intelligent Sys-
tems, Vol. 13(6): 57-65, 1998.

[5] R. Gregor, M. Lützeler, M. Pellkofer, K.-H. Siedersberger, and E. D. Dick-
manns, A vision system for Autonomous Ground Vehicles With a Wide
Range of Maneuvering Capabilities, Computer Vision Systems, Second
International Workshop, ICVS 2001 Vancouver, Canada, July 7-8 2001.

[6] A. Broggi, M. Bertozzi, and A. Fascioli, ARGO and the MilleMiglia in
Automatico Tour, IEEE Intelligent Systems, Vol. 14(1): 55-65, 1999.

[7] M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele, Stereo vision-based
vehicle detection, Proc. IEEE Intelligent Vehicles Symposium, Dearborn,
MI, USA, October 3-5 2000.

[8] P. H. Batavia, D. A. Pomerleau, and C. E. Thorpe, Predicting Lane Posi-
tion for Roadway Departure Prevention, Proc. IEEE Intelligent Vehicles
Symposium, Stuttgart, Germany, October 28-30 1998.

[9] R. Aufrère, J. Gowdy, C. Mertz, C. Thorpe, C. Wang, and T. Yata, Per-
ception for collision avoidance and autonomous driving, Mechatronics,
Vol. 13(10): 1149-1161, 2003.

[10] F. Heimes and H.-H. Nagel, Towards Active Machine-Vision-Based
Driver Assistance for Urban Areas, International Journal of Computer
Vision, Vol. 50(1): 5-34, 2002.

[11] D. Lieb, A. Lookingbill, S. Thrun: Adaptive Road Following using Self-
Supervised Learning and Reverse Optical Flow, Proc. Robotics Science
and Systems, Cambridge, MA, USA, June 8-11 2005.

[12] H. Greenspan, J. Goldberger, and I. Eshet: Mixture model for face-color
modeling and segmentation, Pattern Recognition Letters Vol. 22(14):
1525-1536 (2001).

[13] B. Davies and R. Lienhart, Using CART to Segment Road Images,
Proc. SPIE Multimedia Content Analysis, Management, and Retrieval,
San Jose, CA, USA, Jan 15-19 2006.

[14] S. Thrun, M. Montemerlo, and A. Aron: Probabilistic Terrain Analysis
For High-Speed Desert Driving. Proc. Robotics Science and Systems,
Philadelphia, PA, USA, August 16-19 2006.

[15] S. Ettinger, M. Nechyba, P. Ifju, and M. Waszak: Vision-Guided Flight
Stability and Control for Micro Air Vehicles, Advanced Robotics, Vol.
17: 617-640, 2003.

[16] R. Duda and P. Hart: Pattern Classification and Scene Analysis, John
Wiley and Sonds, New York, NY, 1973.

[17] D. Stavens and S. Thrun: A Self-Supervised Terrain Roughness Estimator
for Off-Road Autonomous Driving, In Proc. Conference on Uncertainty
in AI (UAI), Cambridge, MA, USA, July 13-16 2006.

[18] http://www.intel.com/technology/computing/opencv/index.htm
[19] http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/

